Mirra
SDK Reference

Feedback

SDK reference for feedback operations

Overview

Internal feedback and bug reporting system for beta usage

  • Category: internal
  • Auth Required: No
  • Supported Modes: standard, delegated, service

Operations

reportBug

Report a bug with detailed context and reproduction steps

Arguments:

  • title (string, required): Brief bug description
  • description (string, required): Detailed description of the bug
  • severity (string, required): Bug severity: critical, high, medium, or low
  • stepsToReproduce (array, optional): Steps to reproduce the bug
  • expectedBehavior (string, optional): What should happen
  • actualBehavior (string, optional): What actually happens
  • errorDetails (object, optional): Error details: { message, stack, code }
  • context (object, optional): Additional context: { conversationId, recentMessages, platform, appVersion }
  • llmAnalysis (string, optional): LLM analysis of the issue

Returns:

AdapterOperationResult - Normalized result with id, type, title, severity, createdAt, source

Response Fields:

FieldTypeDescription
idstringUnique identifier for the feedback report
createdAtstringISO 8601 timestamp when created
sourcestringSource of the report: user_submitted or llm_auto_report
type'bug'Report type indicator
titlestringBrief bug description
severitystringBug severity: critical, high, medium, or low

Example:

const result = await mirra.feedback.reportBug({
  title: "example",
  description: "example",
  severity: "example"
});

reportToolFailure

Auto-report tool or adapter failures for debugging

Arguments:

  • adapterType (string, required): Adapter type (e.g., jupiter, crypto)
  • operation (string, required): Operation that failed (e.g., swap, sendToken)
  • errorMessage (string, required): Error message from the failure
  • errorCode (string, optional): Error code if available
  • errorStack (string, optional): Error stack trace
  • args (object, optional): Sanitized arguments that caused the failure
  • llmAnalysis (string, optional): LLM analysis of why it failed
  • suggestedFix (string, optional): LLM suggested fix
  • context (object, optional): Additional context: { conversationId, userId, timestamp }

Returns:

AdapterOperationResult - Normalized result with id, type, adapterType, operation, errorMessage, createdAt, source

Response Fields:

FieldTypeDescription
idstringUnique identifier for the feedback report
createdAtstringISO 8601 timestamp when created
sourcestringSource of the report: user_submitted or llm_auto_report
type'tool_failure'Report type indicator
adapterTypestringAdapter type that failed
operationstringOperation that failed
errorMessagestringError message from the failure

Example:

const result = await mirra.feedback.reportToolFailure({
  adapterType: "example",
  operation: "example",
  errorMessage: "example"
});

reportMissingCapability

Report when LLM cannot fulfill a user request

Arguments:

  • userRequest (string, required): What the user asked for
  • reason (string, required): Why it could not be fulfilled
  • suggestedCapability (string, optional): What capability would enable this
  • relatedAdapters (array, optional): Adapters that might be relevant
  • context (object, optional): Additional context: { conversationId }

Returns:

AdapterOperationResult - Normalized result with id, type, userRequest, reason, createdAt, source

Response Fields:

FieldTypeDescription
idstringUnique identifier for the feedback report
createdAtstringISO 8601 timestamp when created
sourcestringSource of the report: user_submitted or llm_auto_report
type'missing_capability'Report type indicator
userRequeststringWhat the user asked for
reasonstringWhy it could not be fulfilled

Example:

const result = await mirra.feedback.reportMissingCapability({
  userRequest: "example",
  reason: "example"
});

submitFeedback

Submit general user feedback

Arguments:

  • sentiment (string, required): Sentiment: positive, negative, or neutral
  • feedback (string, required): Feedback content
  • category (string, optional): Category: ux, performance, feature, or general
  • context (object, optional): Additional context: { feature, screen }

Returns:

AdapterOperationResult - Normalized result with id, type, sentiment, category, createdAt, source

Response Fields:

FieldTypeDescription
idstringUnique identifier for the feedback report
createdAtstringISO 8601 timestamp when created
sourcestringSource of the report: user_submitted or llm_auto_report
type'feedback'Report type indicator
sentimentstringFeedback sentiment: positive, negative, or neutral
category`stringnull`

Example:

const result = await mirra.feedback.submitFeedback({
  sentiment: "example",
  feedback: "example"
});

submitFeatureRequest

Submit a feature request

Arguments:

  • title (string, required): Feature title
  • description (string, required): Feature description
  • useCase (string, optional): Why the user needs this feature
  • priority (string, optional): Priority: high, medium, or low

Returns:

AdapterOperationResult - Normalized result with id, type, title, priority, createdAt, source

Response Fields:

FieldTypeDescription
idstringUnique identifier for the feedback report
createdAtstringISO 8601 timestamp when created
sourcestringSource of the report: user_submitted or llm_auto_report
type'feature_request'Report type indicator
titlestringFeature title
priority`stringnull`

Example:

const result = await mirra.feedback.submitFeatureRequest({
  title: "example",
  description: "example"
});

On this page